Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Public Health ; 10: 986273, 2022.
Article in English | MEDLINE | ID: covidwho-2215420

ABSTRACT

This study aims to analyze the inter-provincial variation in the increase of attack rates in the third wave of the COVID-19 outbreak in Turkey and to determine their relationship with potential urban health indicators. In this ecological study, dependent variables were selected as the COVID-19 attack rates of provinces before the third wave and during the third peak and the attack rate increase ratio. Urban health indicators that can function as determinants of health were calculated for each province under five headings: demographic, health capacity, economic, environmental, and socio-cultural. The epidemiologic maps were produced to show the spatial distribution of COVID-19 attack rates pre- and during the third wave. The associations with urban indicators were conducted using bivariate analysis, including Pearson or Spearman correlation analysis. A multiple linear regression model was run with variables significantly associated with increased attack rates. The results of our study show significant regional variations in COVID-19 attack rates both at the beginning and during the third wave of the COVID-19 pandemic in Turkey. Among the provinces, the attack rate increase ratio has only shown significant correlations to education level and some economic indicators, such as income, employment, industrial activity measured by electric consumption, and economic activity in the manufacturing industry. The multivariate analysis determined that the indicator of economic activity in the manufacturing industry is related to the increase of the attack rate in the third wave. Our results show that the COVID-19 cases are higher in more developed cities with more manufacturing sector activity. It makes us think that it is mainly related to inequalities arising from access to health institutions and testing. It can be determined that the partly lockdown strategy, which excluded the industrial activity in the country, concluded the higher increase in the attack rates in highly industrialized provinces.


Subject(s)
COVID-19 , Urban Health , Humans , Incidence , COVID-19/epidemiology , Turkey/epidemiology , Pandemics , Communicable Disease Control , Disease Outbreaks
2.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2126285

ABSTRACT

This study aims to analyze the inter-provincial variation in the increase of attack rates in the third wave of the COVID-19 outbreak in Turkey and to determine their relationship with potential urban health indicators. In this ecological study, dependent variables were selected as the COVID-19 attack rates of provinces before the third wave and during the third peak and the attack rate increase ratio. Urban health indicators that can function as determinants of health were calculated for each province under five headings: demographic, health capacity, economic, environmental, and socio-cultural. The epidemiologic maps were produced to show the spatial distribution of COVID-19 attack rates pre- and during the third wave. The associations with urban indicators were conducted using bivariate analysis, including Pearson or Spearman correlation analysis. A multiple linear regression model was run with variables significantly associated with increased attack rates. The results of our study show significant regional variations in COVID-19 attack rates both at the beginning and during the third wave of the COVID-19 pandemic in Turkey. Among the provinces, the attack rate increase ratio has only shown significant correlations to education level and some economic indicators, such as income, employment, industrial activity measured by electric consumption, and economic activity in the manufacturing industry. The multivariate analysis determined that the indicator of economic activity in the manufacturing industry is related to the increase of the attack rate in the third wave. Our results show that the COVID-19 cases are higher in more developed cities with more manufacturing sector activity. It makes us think that it is mainly related to inequalities arising from access to health institutions and testing. It can be determined that the partly lockdown strategy, which excluded the industrial activity in the country, concluded the higher increase in the attack rates in highly industrialized provinces.

3.
J Trace Elem Med Biol ; 73: 127015, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1867436

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), a worldwide health problem, is the cause of 2019 coronavirus disease. This study aimed to compare the trace element (selenium and iron), electrolyte (calcium and sodium), and physical activity levels of COVID-19 patients before and after COVID-19 treatment. METHOD: This prospective study was conducted in patients diagnosed with COVID-19 (n = 15). Trace element (selenium and iron), electrolyte (calcium and sodium), and physical activity levels of the patients were compared before and after the treatment. RESULT: Most of patients had selenium deficiency (86.7 %), iron deficiency (73.3 %), calcium deficiency (66.7 %) and sodium deficiency (46.7 %) before COVID-19 treatment. The most important improvements were seen in iron deficiency (from 73.3 % to 26.7 %) and sodium deficiency (from 46.7 % to 13.3 %) after the treatment. Selenium, iron, calcium, and sodium levels of the patients were significantly higher after the treatment (p < 0.05). The patients had low physical activity before and after COVID-19 treatment. In addition, no statistically significant difference was found in the comparison of physical activity levels (p > 0.05). CONCLUSION: This study indicated that selenium, iron, calcium, and sodium levels and deficiencies might improve after treating patients with COVID-19. However, the results of this study showed that the physical activity levels of COVID-19 patients might remain stable and low throughout the treatment process.


Subject(s)
COVID-19 Drug Treatment , Selenium , Trace Elements , Calcium , Electrolytes , Exercise , Humans , Ions , Iron , Prospective Studies , SARS-CoV-2 , Selenium/therapeutic use , Sodium , Trace Elements/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL